Digital force-feedback for protein unfolding experiments using atomic force microscopy

نویسندگان

  • Christian A Bippes
  • Harald Janovjak
  • Alexej Kedrov
  • Daniel J Muller
چکیده

Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand–receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA. (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Atomistic Simulations of Protein Unfolding in Low Speed Atomic Force Microscope and Force Clamp Experiments with the Help of Boxed Molecular Dynamics.

The results of boxed dynamics (BXD) fully atomistic simulations of protein unfolding by atomic force microscopy (AFM) in both force clamp (FC) and velocity clamp (VC) modes are reported. In AFM experiments the unfolding occurs on a time scale which is too long for standard atomistic molecular dynamics (MD) simulations, which are usually performed with the addition of forces which exceed those o...

متن کامل

Direct observation of multiple and stochastic transition states by a feedback-controlled single-molecule force measurement.

To overcome the ensemble-averaging barrier, single-molecule experiments have been performed, but energy landscapes comprising multiple intermediates have not yet been defined. We performed mechanical unfolding of staphylococcal nuclease using intermolecular force microscopy, modified AFM with high resolution and feedback control of the positioning. The force dropped vertically just after its pe...

متن کامل

Analyzing forced unfolding of protein tandems by ordered variates, 1: Independent unfolding times.

Most of the mechanically active proteins are organized into tandems of identical repeats, (D)N, or heterogeneous tandems, D1-D2-...-DN. In current atomic force microscopy experiments, conformational transitions of protein tandems can be accessed by employing constant stretching force f (force-clamp) and by analyzing the recorded unfolding times of individual domains. Analysis of unfolding data ...

متن کامل

Stretching of proteins in a uniform flow.

Stretching of a protein by a fluid flow is compared to that in a force-clamp apparatus. The comparison is made within a simple topology-based dynamical model of a protein in which the effects of the flow are implemented using Langevin dynamics. We demonstrate that unfolding induced by a uniform flow shows a richer behavior than that in the force clamp. The dynamics of unfolding is found to depe...

متن کامل

Analyzing forced unfolding of protein tandems by ordered variates, 2: dependent unfolding times.

Statistical analyses of forced unfolding data for protein tandems, i.e., unfolding forces (force-ramp) and unfolding times (force-clamp), used in single-molecule dynamic force spectroscopy rely on the assumption that the unfolding transitions of individual protein domains are independent (uncorrelated) and characterized, respectively, by identically distributed unfolding forces and unfolding ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006